School of Aviation
Safety Management System
<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Change</th>
<th>Revision Effective Date</th>
<th>Revision Inserted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Original issue</td>
<td>4/10/19</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Revision 1</td>
<td>6/3/19</td>
<td>EW</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

1.0—INTRODUCTION .. 6

1.1 - BACKGROUND ... 6

1.2—SMS MANUAL AND SUPPORTING PROGRAMS ... 6

1.3—SAFETY MANAGEMENT PLAN ... 6

1.4—SCOPE OF SAFETY MANAGEMENT ... 8

1.5—OVERVIEW OF SMS FRAMEWORK .. 8

2.0—SAFETY POLICY ... 9

2.1—OVERVIEW ... 9

2.2—SAFETY POLICY ... 9

2.3—MGA’s AVIATION SAFETY PERSONNEL .. 10

2.4—COMPLIANCE WITH STANDARDS AND LEGAL REQUIREMENTS .. 11

2.5—EMERGENCY PREPAREDNESS AND RESPONSE .. 12

2.6—DOCUMENTATION AND RECORDS .. 12

3.0—SAFETY RISK MANAGEMENT .. 13

3.1—HAZARD IDENTIFICATION AND ANALYSIS .. 14

3.2—RISK ASSESSMENT AND CONTROL ... 18

3.2.1—Hazard and Incident Reporting System .. 18

3.2.2—Occurrences and Hazards ... 21

4.0—SAFETY ASSURANCE .. 22

4.1—Overview ... 22

4.2—AUDITS AND INSPECTIONS .. 22

4.2.1—Audits Checklist ... 22

4.2.2—Inspections: Internal Evaluation ... 24

4.3—INVESTIGATIONS.. 24

4.3.1—Incidents and Accidents ... 24

4.4—SAFETY PERFORMANCE MONITORING AND MEASUREMENT ... 24

4.4.1—Management of Change ... 25

4.4.2—Continuous Improvement .. 25

5.0—SAFETY PROMOTION .. 26
1.0—INTRODUCTION

1.1 - BACKGROUND

Middle Georgia State University School of Aviation’s (MGA SOA) Safety Management System has been developed from guidance contained in ICAO Document 9859: Safety Management Manual, Transport Canada Advisory Circular AC 107-001: Guidance on Safety Management Systems Development, and Federal Aviation Administration’s (FAA)’s Safety Management System (SMS) Implementation Guide (Revision 3 June 1, 2010)

1.2—SMS MANUAL AND SUPPORTING PROGRAMS

This Safety Management System (SMS) Manual has been developed to direct all personnel in the safe operations of MGA aviation operations and this manual is the policy that governs the operation of this organization. SMS is a proactive, integrated approach to safety management and is part of an overall management process that MGA SOA has adopted in order to ensure that the goals of this organization can be accomplished.

SMS embraces the principle that the identification and management of risk increases the likelihood of accomplishing the mission. Hazards can be identified and dealt with systematically through the Hazard Reporting Program that facilitates continuous improvement and professionalism. Auditing and monitoring processes ensure that aircraft and flight training operations are accomplished in such a way as to minimize the risks inherent in FAR Part 141 flight training.

This SMS Manual sets forth instructions and guidance to all MGA SOA personnel regarding their responsibilities, authorities, and performance of duties as they pertain to MGA’s Safety Management System.

1.3—SAFETY MANAGEMENT PLAN

Safety is the state in which the risk of harm to people or damage to property is reduced to, and maintained at or below, an acceptable level through a continuing process of hazard identification and risk management. Safety management holds the key to MGA’s objectives and affects every process within the organization. Safety management includes all areas of safety, security, health, and environmental management.

The primary purpose of this manual is to develop a system at MGA SOA for managing our flight training processes and ensure compliance with all guidelines published by FAA, the International Civil Aviation Organization (ICAO), the Occupational Safety Hazard Association (OSHA), the University Aviation Association (UAA), and the Aviation Accreditation Board International (AABI). This SMS Manual identifies the organization’s Safety Management Plan as the tool used to define how the SMS supports the MGA SOA’s flight training, aircraft maintenance, and Heart of Georgia Regional Airport operations. University management is committed to the SMS; and, has established leadership for the program and will continue to demonstrate, through everyday actions, the commitment to safety and its priority in the achievements of the organization.

The processes in place in the Safety Management Plan include the active involvement of all MGA SOA faculty, maintenance employees, staff, flight instructors, and students, who, through planning and review, will drive efforts for continuing improvement in safety and safety performance. The key focus is the safe operations of airworthy aircraft and a safe training environment.
Safety audits are essential components of the Safety Management Plan. Audits review systems, identify safety issues, prioritize safety issues, and involve all university personnel and students to enhance the safety of operations.
1.4—SCOPE OF SAFETY MANAGEMENT

MGA SOA has developed an integrated Safety Management System for its entire organization. The SMS provides the highest reasonable level of safety by identifying and minimizing risks, which could contribute to accidents, incidents, or injury to persons. MGA SOA provides both safety and quality management covering the complete scope and life cycle of all systems and operational processes, including:

- Flight Training Operations;
- Operational Control (Dispatch / Flight Following);
- Maintenance and Inspection; including:
 - Parts / materials
 - Technical data
 - Quality control
 - Records management
- Security;
- Aircraft ground handling and servicing;
- Training of all personnel.

1.5—OVERVIEW OF SMS FRAMEWORK

As described in FAA AC 120-92 and the ICAO Safety Management Manual (SMM) (Document 9859), SMS processes are organized into four basic components of safety management: safety policy, safety risk management, safety assurance, and safety promotion.

Safety policy must be described with who in the organization has responsibility, authority, and accountability for the goals of the organization. The policies, procedures, and structure of the organization must be described along with the fundamental value of safety within the organization.

Safety Risk Management is the process of hazard identification and management of risk to acceptable levels. This systematic process describes how to identify hazards, how to assess the risks, and then the procedures to control the risks.

Safety Assurance processes ensure that once risk controls are in place, the organization continues to review the safety initiatives to make sure that risks are maintained within acceptable levels as defined by the organizations safety policies and goals.

Safety Promotion is the ongoing process to promote safety within the organization. Senior leadership must continuously promote the growth of a positive safety culture within the organization. Key components are training personnel and clear communication of lessons learned throughout the organization.
2.0—SAFETY POLICY

2.1—OVERVIEW

All faculty, staff, maintenance personnel, flight instructors, and students are accountable for MGA SOA’s programs safety performance. In addition, all are committed to operating in safe, healthy, secure working conditions and promoting safety attitudes with the objective of having an accident-free workplace.

MGA Dean of the School of Aviation (here forth the Dean) is committed to making safety excellence a part of all activities in the School of Aviation as described in the safety policy statement below.

2.2—SAFETY POLICY

Safety is one of our core university aviation functions. We are committed to developing, implementing, maintaining, and constantly improving strategies and processes to ensure that all our aviation activities take place under a balanced allocation of university resources. We shall strive to achieve the highest level of safety performance and exceed FAA standards, while training our university aviation students.

All levels of faculty, employees, and aviation students are accountable for the highest level of safety performance, starting with the Dean of the School of Aviation at MGA.

Our commitment is to:

- Support the management of safety through the provision of all appropriate resources that will result in an organizational culture that fosters safe practices, encourages effective safety reporting and communication, and actively manages safety with the same attention to results as the attention to the results of the other management systems of the organization;
- Clearly define accountabilities and responsibilities for all faculty, flight instructors, aviation students, and employees, to maximize the organization’s safety performance;
- Establish and operate hazard identification and risk management processes, including a hazard reporting system, in order to eliminate or mitigate the safety risks of the consequences of hazards resulting from our operations or activities to a point which is as low as reasonably practicable (ALARP);
- Ensure that no action will be taken against any student, flight instructor, or employee who discloses a safety concern through the hazard reporting system, unless such disclosure indicates, beyond any reasonable doubt, an illegal act, gross negligence, or a deliberate or willful disregard of regulations or procedures;
- Comply with and, wherever possible, exceed, regulatory requirements and standards;
- Ensure that all employees and staff are provided with adequate and appropriate aviation safety information and training, are competent in safety matters, and are allocated only tasks commensurate with their skills;
- Establish and measure our safety performance against realistic safety performance indicators and safety performance targets;
- Continually improve our safety performance through management processes that ensure relevant safety action is taken and is effective.
2.3—MGA’s AVIATION SAFETY PERSONNEL

The Dean is ultimately responsible for the following safety accountabilities:

- Conduct of all operations is in the safest manner practicable
- Provide the necessary resources to implement and maintain the SMS.
- Development of long-term safety objectives, including the establishment of safety policies and practices.

The Aviation Safety Manager is ultimately responsible for the following safety accountabilities:

- Implements management systems that will establish and maintain safe work practices
- Collects safety data and conducts assessment of the safety program
- Serves as Chair of the School of Aviation Safety Committee
- Conducts necessary safety training
- Develops and delivers a safety newsletter to be delivered to a faculty, staff, and students
- Coordinates with the University Risk Manager to align School of Aviation safety policy and procedures with University safety policy and procedures

The Department Chairs (Aviation Maintenance and Structural Technology and Aviation Science and Management) are responsible for the following:

- Maintaining and reporting all safety related data, including the minutes of safety meetings.
- Providing information on hazard and risk analysis.
- Defining and establishing a procedure for risk management.
- Preparing and presenting audit reports and remedial actions.

The Chief Flight Instructor is responsible for the following safety accountabilities:

- In the flight department, maintaining and reporting all safety related data, including the minutes of safety meetings.
- Conducting incident and accident investigations.
- Ensuring all flight operations personnel understand and comply with applicable regulatory requirements, standards, and the organization’s safety policies and procedures.
- Identification and development of resources to achieve safe flight operations.
- Observing and controlling safety systems by monitoring and supervising flight instructors and pilot students.
- Measuring performance compliance of flight instructors and pilot students with MGA
SOA’s goals, objectives, and regulatory requirements.
- Reviewing standards and the practices of MGA SOA flight personnel as they affect flight safety.

The Director of Aviation Maintenance is responsible for:
- Ensuring all maintenance personnel understand applicable regulatory requirements, standards, and MGA SOA safety policies and procedures.
- Identification and development of resources to achieve safe maintenance operations.
- Observing and controlling safety systems by monitoring and supervising maintenance personnel.
- Measuring maintenance personnel performance compliance with MGA SOA’s goals, objectives, and regulatory requirements.
- Reviewing standards and the practices of maintenance personnel as they affect flight safety.

2.4—COMPLIANCE WITH STANDARDS AND LEGAL REQUIREMENTS

All personnel have the duty to comply with approved standards including: a) MGA policy and procedures, b) aircraft manufacturer's operating procedures and limitations, and c) government regulations. Research shows that once you start deviating from the rules, you are almost twice as likely to commit an error with serious consequences. Breaking the rules usually does not result in an accident; however, it always results in greater risk for the operation, and the organization supports the principle of, “NEVER take unnecessary risks.”

Behavior of intentional non-compliance with standards is a function of consequences. MGA management is committed to identifying deviations from standards and taking immediate corrective action. Corrective action can include counseling, training, discipline, grounding, or removal. Corrective action must be consistent and fair.

MGA management makes a clear distinction between honest mistakes and intentional non-compliance with standards. Honest mistakes occur, and they are addressed through counseling and training.

Research has shown that most accidents involve some form of flawed decision-making. This most often involves non-compliance with known standards. Non-compliance rarely results in an accident; however, it always results in greater risk for the operation. MGA policy agrees with the following conclusions:
- Compliance with known procedures produces known outcomes.
- Compliance with standards helps guarantee repeatable results.
- Bad rules produce bad results.
- Complacency affects the safe operation of the aircraft and cannot be tolerated.
- Standards are mechanisms for change.
- The hardest thing to do and the right thing to do are often the same thing.

This organization is committed to the principle that people are rewarded for normal, positive performance of their duties that comply with organization standards. Personnel will not be rewarded for accomplishing the mission by breaking the rules. Reinforced bad behavior breeds continued bad behavior. This is unacceptable.
2.5—EMERGENCY PREPAREDNESS AND RESPONSE

The MGA SOA Safety Committee identifies the potential for accidents and incidents through proactive analysis programs. The MGA SOA Safety Committee will respond to accidents and incidents at all times and is responsible for MGA SOA emergency response and planning.

The Flight Standard Operating Procedures and Eastman’s Tower Emergency Procedures will govern most actions to be taken in the event of an aircraft accident, incident, or natural disaster. MGA’s SOA unique location and mission requires additional plans beyond the MGA Occupational Health Safety Manual.

The Dean is responsible for assuring that all personnel are trained to handle MGA SOA emergencies based on their role in the organization. Emergency drills are conducted at least annually to ensure employees are competent. Emergency contact numbers are kept current on the MGA website located here https://www.mga.edu/environmental-health-safety/workplace-contacts.php.

2.6—DOCUMENTATION AND RECORDS

All safety documents are controlled by the Dean, Aviation Safety Manager, Department Chairs, and the Chief Flight Instructor, as they pertain to their specific areas, and MGA SOA Safety Committee. This includes the SMS documents, hazard and safety reports, and training records. Change control procedures are incorporated into each of these documents.

The Department Chairs are responsible for maintaining and reporting safety related data, including the minutes of safety meetings, information on hazard and risk analysis, risk management, remedial action, and incident and accident investigations.
3.0—SAFETY RISK MANAGEMENT

Figure 1
Safety Risk Management and Safety Assurance Processes
Source: FAA AC 120-92
3.1—HAZARD IDENTIFICATION AND ANALYSIS

The systematic identification and control of all major hazards is the fundamental process in this SMS. The success of the organization depends on the effectiveness of managing hazards and risk. Hazards are primarily identified through employee/student reporting, safety meetings, audits, and inspections.

When a major change in operations, equipment, or pilot certification is anticipated, the management of change process includes hazard identification and risk management processes. Risk management is the identification and control of risk. See Figure 2 as it depicts the process. It is the responsibility of every member of MGA SOA. The first goal of risk management is to avoid the hazard. MGA SOA has established sufficient independent and effective barriers, controls and recovery measures to manage the risk posed by hazards to a level as low as practicable. These barriers, controls, and recovery measures include equipment, work processes, standard operating procedures, training, and other similar means to prevent the hazard development and limit their consequences should they occur.

MGA SOA ensures that all individuals responsible for safety critical barriers, controls, and recovery measures are aware of their responsibilities and competent to act accordingly. The organization establishes who is doing what to manage key risks and ensures that these
people, and their actions, are up to the task.

The Aviation Safety Manager is responsible for accepting or denying operations and manages risk through the MGA SOA Safety Committee using the Risk Assessment Matrix (see Tables 1 thru 4). The matrix is a graphic portrayal of risk as the product of probability on one axis (exposure, frequency, or likelihood) and Severity (potential consequence or loss from the outcome) on the other axis.
The Risk Assessment Matrix shows an assigned value and has a broad application for qualitative risk determination, as well as graphically presenting risk criteria. Risk assessment is entered into the Hazard/Incident Report and is maintained by the safety manager. These risk assessments make up the list of hazards for the organization.

TABLE #1 – SEVERITY Scale Definitions (WHAT could happen) (source: ATC Advantage.com)

<table>
<thead>
<tr>
<th>CONSEQUENCE</th>
<th>S5 = CATASTROPHIC</th>
<th>S4 = CRITICAL</th>
<th>S3 = CONCERNING</th>
<th>S2 = MINOR</th>
<th>S1 = NEGLIGIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCIDENT</td>
<td>Irreparable loss of aircraft or other key equipment or facility</td>
<td>Significant damage - Multiple weeks out of service to repair</td>
<td>Moderate damage - multiple days out of service to repair</td>
<td>Minor damage - repaired and back in service within 24 hours</td>
<td>Damage is within limits or requires less than two hours to repair and return to service</td>
</tr>
<tr>
<td>INJURY</td>
<td>Death or total disability of an employee or passenger</td>
<td>Partial disability greater than 3 months of an employee or passenger</td>
<td>Lost workday injury over 3 days for an employee or comparable to passenger</td>
<td>OSHA defined injury of up to 3 LWDs for an employee or similar passenger injury</td>
<td>Any non-OSHA injury (no treatment needed to employee or passenger)</td>
</tr>
<tr>
<td>OPERATIONAL</td>
<td>Operating an aircraft in an unairworthy and/or unsafe condition</td>
<td>Operating an aircraft in an unairworthy but not unsafe condition</td>
<td>Operating an aircraft in an uncertain, but ultimately safe, condition</td>
<td>Stopping aircraft from operating after mistakenly releasing to service</td>
<td>Affecting aircraft reliability, but not affecting airworthiness or safety of operation</td>
</tr>
<tr>
<td>SYSTEMS</td>
<td>Complete loss or breakdown of entire system or sub-systems</td>
<td>Significant breakdown of a system or sub-system</td>
<td>Partial breakdown of system or sub-system</td>
<td>System deficiencies having some effect on time achievement of objectives</td>
<td>Little or no effect on system or sub-system</td>
</tr>
<tr>
<td>FINANCIAL</td>
<td>Fine, citation or other loss more than $1,000,000</td>
<td>Fine, citation or other loss more than $200,000 but less than $1,000,000</td>
<td>Fine, citation or other loss more than $50,000 but less than $200,000</td>
<td>Fine, citation or other loss more than $5,000 but less than $50,000</td>
<td>Fine, citation or other loss less than $5,000</td>
</tr>
</tbody>
</table>

TABLE #2– PROBABILTY Scale Definitions (WHEN it could happen) (source: ATC Advantage.com)

<p>| P5 | FREQUENT | Likely to occur within 30 days. Will be continually experienced unless action is taken |
| P4 | OCCASIONAL | Estimated to occur within 6 months. Will occur often, if unchanged |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>SELDOM = Estimated to occur within one year. Infrequent occurrence</td>
</tr>
<tr>
<td>P2</td>
<td>REMOTE = Estimated it might occur within 5 years. Possible, but remote chance of occurrence.</td>
</tr>
<tr>
<td>P1</td>
<td>IMPROBABLE = Unlikely to occur. Any estimate of occurrence is over 5 years.</td>
</tr>
</tbody>
</table>
3.2—RISK ASSESSMENT AND CONTROL

3.2.1—Hazard and Incident Reporting System

Policy

Effective implementation of MGA SOA Policy is contingent upon a working system to prevent accidents. Essential to this objective is a program to identify and eliminate or mitigate workplace hazards and to prevent the occurrence of unsafe incidents. Under normal circumstances, hazards should be reported and corrected at the lowest operational level utilizing established lines of authority and responsibility. For other situations, the Hazard and Incident Reporting System (*Lessons Learned*) provides a means for affected personnel to report recognized safety hazards or reportable incidents to faculty management for appropriate action.
Non-Reprisal Policy

The following statement provides guidance for all employees and students regarding the use of, participation in, and party to MGA SOA’s Hazard and Incident Reporting System.
MGA SOA is committed to the safest operation possible. Therefore, it is imperative
we promote uninhibited reporting of all hazards, occurrences, and incidents that in any way
affect the safety of our operations, employees, students, facilities, or visitors.

It is therefore, the policy of MGA SOA to recognize the efforts of individuals who
identify and communicate unsafe acts and conditions for the purpose of promoting safety. It
is also the responsibility of each employee or student to communicate any information that
could possibly affect the integrity of flight and ground safety. All communications made by
employees or students following the SMS reporting process shall be made with the
assurance that no retaliation/reprisal shall occur to the employee or student for submitting
any information via the Hazard and Incident Reporting System. The identity of employees
and students who provide information through this system shall be protected to the extent
permissible by law while disseminating critical flight and ground safety information.

This non-reprisal policy shall not apply to information concerning accidents and
criminal offenses, or to information provided to MGA SOA by a source other than the
employee or student.

System Description

Any individual involved directly or indirectly in the flight and maintenance activities
of MGA SOA (i.e., employees, part-time/contract personnel, and aviation students) must
report any observed hazard. If a hazard is recognized and unable to be resolved via normal
procedures, the observer can send an email to aviationsafety@mga.edu. This link is
found on the MGA website under the School of Aviation link, but is not anonymous. If they
want to remain anonymous, they can report the hazard using this link
https://www.mga.edu/risk-management/report-a-hazard.php, also located on our
website, in the Risk Management area.

The following provides a guideline for the purpose of determining whether a
situation warrants the submission of a Hazard/Incident Report. This description is not all-
inclusive and the originator should exercise sound judgment and discretion when
determining if a report should be submitted. A Hazard and Incident Report shall be
submitted when any situation, practice, procedure, or process is observed which is either:
a) a recognized safety concern, b) considered unusual from an operational or procedural
standpoint, or c) considered deficient from a safety standpoint. Any safety concern that
would be of interest to other aviation students, instructors, or faculty should be reported. A
report shall also be submitted in the event of any incident detailed in the Incident Reporting
Criteria found in this document.

Incident reports should be submitted using the aviationsafety@mga.edu email
address, or Risk Management link. The submitter's identification on this report is optional
but is encouraged in the event that further information is required for elimination of the
hazard. Reports should be concise and should accurately describe the hazard. When
applicable, reports should include the submitter's recommendation(s) for corrective action.
In circumstances where the perceived hazard possesses the immediate potential for
injury/illness to persons or damage/loss of property, the Department Chair, Chief Flight
Instructor, or Director of Aircraft Maintenance shall be notified immediately by the most
expeditious means possible to determine the appropriate action to prevent such injury,
illness, damage, or property loss.

Hazard and Incident Report Processing

Upon receipt of a Hazard/Incident Report, the proper authority over the area in
which the hazard was reported will conduct an investigation to determine the validity of
the report as well as to gain additional information concerning the report's subject matter. Any significant hazardous situations or equipment shall be either placarded or removed from service until the hazardous situation is corrected. The submitter, if identified, will be advised of the result of the investigation. If a Hazard/Incident Report identifies a problem that is outside the scope or authority of the Safety Program, the originator will be offered assistance in routing the information to the appropriate person responsible.

Upon validation of a Hazard/Incident Report, the proper authority over the area in which the hazard was reported shall identify and notify the individual(s) assigned responsibility for the affected area of operation. The contents of the Hazard/Incident Report and the investigation results will be provided along with recommendations for corrective/preventive action to the Safety Committee. Appropriate action and a target date for elimination or reduction of the hazardous situation will then be determined. The Hazard/Incident Report originator will then be notified of the final disposition of the matter, if identified. There will also be a quarterly newsletter in which these reports will be published, and what if any corrective action was taken.

3.2.2—Occurrences and Hazards

An occurrence is defined as any unplanned safety related event. This event would cause a concern for the safety of students, faculty, flight instructors, employees, equipment, property, or the environment.

A hazard is defined as something that has the potential to cause harm to people and/or the loss of or damage to equipment, property or the environment.

It is the responsibility of the Chief Flight Instructor to ensure all relevant comments and agreed actions from other managers are recorded in the Hazard/Incident report. Reports are closed when all actions have been taken. Occurrences shall be reviewed in the quarterly safety meeting.

Personnel who report are treated fairly and justly, without punitive action from MGA SOA Faculty except in the case of known reckless disregard for regulations and standards, or repeated substandard performance. The “Just Culture” process shown on page 34 is used when deciding if disciplinary action is appropriate.

Significant occurrences are investigated by the Aviation Safety Manager and shall be reviewed by the Dean, Chief Flight Instructor and Department Chair. The Aviation Safety Manager reviews the database for previous occurrences in order to identify trends.
4.0—SAFETY ASSURANCE

4.1—Overview

Safety assurance provides all stakeholders an indication of the performance of the safety system in place. Assurance is "something that gives confidence." After the controls for risk are made part of the safety system, safety assurance takes over to see that they work as intended.

MGA SOA will conduct safety audits and inspections as part of the safety assurance process. The Dean or his designee directs annual audits of the SMS. Findings and associated corrective actions shall be recorded in the audit. Records of audits and inspections, and the resolution of actions needed, are maintained by the safety manager. Issues identified in the audits and inspections are included in the agenda of the Safety Meeting. Positive findings are also recorded. Findings and recommended actions are communicated to all personnel in a timely manner.

4.2—AUDITS AND INSPECTIONS

The use of audit functions to verify compliance and standardization is an integral part of the quality assurance system. An initial audit will cover all activities within the MGA operations. Records of audit findings, including issues of compliance and non-compliance, corrective actions, and follow-up inspections will be kept and maintained by the Aviation Safety Manager. The results of audits and inspections will be communicated to all appropriate personnel in MGA’s SOA.

MGA will perform regularly scheduled internal audits (annually) of its operational processes to determine the performance and effectiveness of risk controls. Planning of the evaluation program will take into account:

- safety criticality of the processes being evaluated, and
- the results of previous evaluations

The MGA Safety Committee will select the evaluators; and document the procedures used, which include the responsibilities and requirements for:

- planning evaluations,
- conducting evaluations,
- reporting results, and
- maintaining records

MGA’s Director of Risk Management will conduct the safety audits; however, he/she may be assisted by a qualified representative of MGA’S Occupational Health and Safety Department. These auditors are experts outside of MGA’S SOA. In this way, the quality assurance function remains neutral and is independent from the operational aspects of MGA’s SOA.

4.2.1—Audits Checklist

Audit checklists are used to identify all of the functions controlled by MGA’s occupational safety manual. The quality audit of MGA SOA’s safety management system will include an account of the following areas:

- Safety policy
- Safety standards
- Safety culture
- Structure of safety accountabilities
- Hazard identification
- Risk Management
- Safety assessment, and Safety monitoring
4.2.2—Inspections: Internal Evaluation

Safety evaluation is fundamental to the safety management process. MGA SOA will conduct internal evaluations of the SMS and operational processes at planned intervals to determine that the SMS conforms to its objectives and expectations. Once each year, MGA’s Chief Flight Instructor will conduct an internal evaluation of the organization’s existing flight operations, operational changes, and future safety management planning. The operational areas to be evaluated are:

- flight training operations
- operational control (dispatch / flight following)
- maintenance and Inspection; including:
 - Parts / materials
 - Technical data
 - Quality control
 - Records management
- Security
- aircraft ground handling and servicing
- training of all personnel

MGA SOA will:

- periodically measure performance objectives and design expectations of the Internal Evaluation Process
- ensure that procedures are followed for safety-related operations and activities; and
- periodically review supervisory and operational controls to ensure the effectiveness of the Internal Evaluation Process

Safety evaluation is fundamental to the safety management process. Once each year, MGA SOA safety management policies and procedures require an internal evaluation of the organization’s existing operations, operational changes, and future safety management planning.

4.3—INVESTIGATIONS

4.3.1—Incidents and Accidents

Safety related events, including accidents and incidents, will be investigated to collect information to help prevent similar events. An initial risk assessment assists in determining the extent of the full investigation. The investigation and analysis will include the following:

- determination of “what” and “why” the event happened, rather than, “who’s” to blame;
- ensure that the FAA or the NTSB are appropriately notified;
- immediate causal and contributing factors;
- organizational factors that may contribute to the hazard or incident;
- the unsafe acts of the operators; and
- a report to the Safety Committee, which will implement recommendations.

4.4—SAFETY PERFORMANCE MONITORING AND MEASUREMENT
4.4.1—Management of Change

Hazards may be inadvertently introduced anytime the operation changes externally or internally. Examples of external change may be due to regulatory requirements, air traffic control, security requirements, or airport issues. Safety management requires a proactive analysis of the change using the Management of Change (MOC) process.

The systematic approach to managing and monitoring organizational change is part of the risk management process. The MGA SOA Safety Committee will identify safety issues associated with change and utilize the following procedures for managing change:

- Identify new hazards and analyze the risk
- Identify the goals, objectives, and nature of the proposed change
- Identify operational procedures that must change
- Analyze changes in location, equipment, or operating conditions
- Insert the current changes to appropriate MGA SOA manuals
- Communicate to all personnel an understanding of the changes
- Review, evaluate, and record potential safety hazards from the change or its implementation
- Obtain the Dean’s approval of the agreed change and implement the new procedure(s)

There are methods for managing the introduction of new technology. All personnel should be consulted when changes to the work environment, process, or practices could have health or safety implications. Changes to resource levels and competency of personnel are assessed as part of the change control procedure.

Change can only be successful if the appropriate personnel participate in the process. Management of change provides a structured framework for managing all aspects of the change.

4.4.2—Continuous Improvement

Safety risk management requires continual feedback to assure all stakeholders that the level of risk is indeed “as low as reasonably practical” and the Safety Management System performance is accomplishing the desired goals.

MGA SOA’s Safety Committee will conduct an annual internal audit of the SMS process to:

- Assess compliance with safety risk controls
- Measure the effectiveness of safety risk controls
- Assess overall system performance
- Identify all new hazards for the year

After analyzing the data, corrective actions, hazard/incident reports, and all safety related processes, the Safety Committee will publish the lessons learned and best practices to all employees, staff, faculty, and flight instructors. There is no way to measure and determine the organization’s improvement of the safety management process without all personnel contributing and reporting below standard performance, as well as the best practices achieving outstanding performance.
5.0—SAFETY PROMOTION

5.1—
INTRODUCTION
Safety promotion includes training, education, and safety communication.
Training and education at MGA SOA includes:
• documented process of training requirements;
• validation test to measure the effectiveness of training;
• general training to operate within MGA SOA SMS; and
• recurrent training on system changes for the past year.

5.2—SAFETY TRAINING
System safety training is one of the key elements within a Safety Management System. To conduct a successful program participants should be trained in appropriate concepts, duties, and responsibilities associated with each area of activity within MGA SOA’s operation.
Specific training in safety management duties is required for faculty, Safety Committee members, inspectors, maintenance personnel, aviation students, and flight instructors. The amount of safety training will be appropriate to the individual’s responsibility and involvement in the SMS. Required training is also used as an administrative control to eliminate or mitigate risk to an acceptable level.

5.3—SAFETY COMMUNICATION
SMS objectives and procedures will be communicated to all aviation personnel and be visible in all aspects of MGA SOA’s operations. The Dean, Aviation Safety Manager, and Safety Committee will work together to communicate the performance of the SMS programs to all aviation personnel. All personnel are encouraged to keep the flow of safety issues to the Safety Committee a top priority at all times. Therefore, MGA SOA’s safety communication will:

• ensure that all personnel are fully aware of MGA SOA’s SMS;
• communicate safety-critical information;
• convey the “nice-to-know” information;
• explain the actions and procedural changes to mitigate or eliminate risk;
6.0—SAFETY MANAGEMENT PLAN

6.1—General

The Safety Committee will function as a clearinghouse for all functions of the MGA SOA’s SMS. Safety policies, procedures, planning, and overall safety performance objectives will be evaluated continuously by the committee. The Aviation Safety Manager will then organize the committee’s directions into action.

6.2—SAFETY COMMITTEE

6.2.1—General Overview

The purpose of the safety committee is to promote the safety, health, and welfare of MGA’s students, faculty, employees, staff, and airport community. In addition, the committee is to act proactively to:

- ensure the safe operation of equipment and facilities
- ensure compliance with the applicable regulations of local, state, and federal authorities
- enhance and protect university insurance programs

Policy responsibility and authority is mandated by the Middle Georgia State University’s Dean of the School of Aviation. The Committee is comprised of the Aviation Safety Manager, who chairs the committee; the Dean; Chairs from each department; the Chief Flight Instructor; the Director of Aircraft Maintenance; and the Air Traffic Control Manager; two faculty; two staff members, and two students. The School of Aviation Safety Committee meets at least quarterly.

6.2.2—Safety Committee Responsibilities

The Safety Committee shall meet on a quarterly basis and the chairperson will establish procedures and agendas each meeting and distribute meeting minutes and action items. All members are asked to bring safety concerns to the attention of the committee and provide feedback to department employees on the results of the meeting.

All members will encourage the prompt and accurate reporting of incidents and safety issues that have surfaced since the last meeting. All members will discuss and recommend solutions to safety issues and/or hazards in the workplace and flight operations. All recommendations will be documented and communicated to all MGA SOA personnel.

Any matter deemed urgent by the Safety Manager, Dean or a Safety Committee member shall be brought to the attention of the President of MGA immediately. The Committee is empowered by the Dean to protect MGA, its employees, its students, and University assets immediately.

6.2.3—Documentation and Records Management

The MGA SOA Safety Committee is responsible for all MGA SOA safety documentation and records management. The Aviation Safety Manager shall record and delegate all actions and deliberations of the Committee (minutes, resolutions, etc.) to ensure its decisions are implemented, as needed. An Action Log will be maintained by the Safety Manager for review at all MGA SOA Safety Committee meetings. The log will document each hazard, incident, accident, and injury report; then, list the actions taken for each safety
issue.

The Dean will ensure decisions of the committee are within appropriate guidelines and will ensure follow through on committee action plans. Minutes will be distributed and maintained for all MGA SOA Safety Committee meetings. Records of each meeting shall be maintained for a period of 2 calendar years from the date the record was created. The Safety Manager will publish an annual report of all items brought before the Committee and those with action taken.
6.3—MIDDLE GEORGIA STATE UNIVERSITY SCHOOL OF AVIATION REPORTING SYSTEM

6.3.1—Non-Punitive Reporting Policy

It is recognized that humans will make errors and systems must be developed that are error tolerant and behaviors changed to lessen the chance of errors occurring. It is not MGA’s goal or policy to seek out the guilty party in order to administer retribution for the error. The goal is not to punish, but to ensure it does not happen again. MGA SOA will strive to develop a non-punitive disciplinary policy as part of its safety management system. Employees and students are more likely to report events and cooperate in an investigation when some level of immunity from disciplinary action is offered. When considering the application of our non-punitive disciplinary policy, MGA SOA will consider whether the occurrence involved willful intent of the individual.

6.3.2—Reporting Responsibilities

All faculty, employees, and students have a responsibility to report what they consider a hazard or unsafe situation, as well as accidents and incidents. Employee and student input are essential for the success of the reporting system. A safety reporting system is worthless if no one uses it.

6.4—HAZARD AND INCIDENT REPORTING CRITERIA

6.4.1—Hazard Reporting Criteria

Hazard Definitions

- Hazard (ICAO): “Condition or an object with the potential to cause injuries to personnel, damage to equipment or structures, loss of material, or reduction of ability to perform a prescribed function.” (ICAO, 2014)
- Hazard (FAA): “any existing or potential condition that can lead to injury, illness, or death to people; damage to or loss of a system, equipment, or property; or damage to the environment. A hazard is a condition prerequisite to an accident or incident.” (FAA AC 120-92A)

The scope of hazards is quite large; but some examples, stated in the ICAO Safety Management Manual (ICAO, 2014), of factors and processes that that should be investigated are:

- design factors of equipment and tasks;
- procedures and operating practices, including documentation, checklists, and their validation in actual operations;
- communications, including means, terminology, and language;
- personnel factors, such as organizational policies, training, salary, and allocation of resources;
- work environment factors, such as ambient noise, vibration, temperature, lighting, and protective equipment and clothing;
- regulatory oversight factors, including the applicability and enforceability of regulation; the certification of equipment, personnel and procedures; the adequacy of oversight;
- defenses, including such factors as adequate detection and warning systems, the error tolerance of equipment, and the failure rates of equipment; and
• human performance, pertaining to medical conditions and physical limitations.

6.4.2—Mandatory Incident Reports

MGA SOA Reportable Incidents
1. If evasive action was taken due to loss of aircraft separation and/or possible collision
2. Any instance of inadequate terrain clearance
3. Pilot’s loss of situational awareness resulting in his/her loss of position for more than 30 minutes
4. Failure of navigation or communication systems
5. Electrical failure resulting in a precautionary landing
6. Any physical damage to the aircraft, propeller, university property, or people
7. Any unintentional exit from a paved surface while landing, taking off, or taxiing
8. Critically low fuel quantity or landing with less than the prescribed reserve fuel load
9. Any airframe icing encounter
10. Severe turbulence
11. Any evacuation of an aircraft for emergency purposes
12. Engine failure or partial power loss
13. Any ditching or controlled landing that is not on an airport runway
14. Any intentional or unintentional violation of MGA’s Standard Operating Procedures
15. Any runway incursion
16. Landing on the wrong runway or at the wrong airport
17. Any departure or excursion from the runway
18. Weather related injury or damage
19. Significant fuel leak
20. Takeoff with a significant weight and balance error
21. Injury to any person while in or outside the aircraft
22. Lighting strike or bird strike
23. Damage to aircraft by ground equipment
24. Damage to non-university property
25. Fire, explosion, smoke, or toxic fumes in or on the aircraft

NTSB Reportable Incidents (immediate notification required)
1. Flight control system malfunction or failure
2. Inability of any required flight crewmember to perform normal flight duties as a result of injury or illness
3. In-flight fire
4. Failure of structural components of a turbine engine excluding compressor and turbine blades and vanes
5. Damage to property, other than aircraft exceeding $25,000 for repair
6. Aircraft collide in flight

6.4.3—Reporting Aircraft Accidents and Injuries
Aircraft accidents will be reported in accordance with Federal Aviation Regulations and the National Transportation Safety Board regulations (Title 49 CFR Part 830).

6.4.4—Reporting Procedures for Hazards and Incidents
Incidents are defined and described in this document under Hazard and Incident Reporting Criteria. If a hazard is recognized and unable to be resolved via normal procedures, the observer can send an email to aviationsafety@mga.edu. This link is found on the MGA website under the School of Aviation link, but is not anonymous. If they want to remain anonymous, they can report the hazard using this link https://www.mga.edu/risk-management/report-a-hazard.php, also located on our website, in the Risk Management area.

If a name is included on the report, a reply to the submitter will follow via email within five working days.

The Normal Process
After a hazard or incident has been identified to the Aviation Safety Manager, Dean or Safety Committee, an Action Log and tracking number are assigned.

During the next Safety Committee Meeting, the safety issue is presented.

The Safety Committee determines if the item warrants further consideration, then assigns the item to the appropriate person for analysis and possible action.

The Safety Committee determines the status of the safety issue and updates the Action Log.
The Immediate Process
- If the Aviation Safety Manager, Dean, Department Chair or Chief Flight Instructor determines that immediate action is required, the appropriate personnel are directed to analyze and take action immediately.
- The Aviation Safety Manager adds the item to the Action Log and a detailed review takes place at the next MGA SOA Safety Committee meeting.

Voluntary Disclosure Reporting
MGA SOA is committed to the promotion of a non-punitive environment where all MGA SOA employees, faculty, staff, and students can voluntarily report safety issues, errors, mistakes, and even violations, without fear of disciplinary action from the university administration or MGA SOA faculty. MGA SOA will not initiate punishment against a student, a flight instructor, or other aviation personnel who discloses a safety related occurrence. This policy cannot apply to criminal or intentional infractions.

Voluntary self-reporting of errors, violations, and near midair collisions are encouraged as MGA SOA strives to promote a safety culture in our flight operations; Dr. James Reason termed this corporate attitude as a “just culture.” Figure 1 below illustrates the accountability of people within our university aviation system. A just culture provides guidelines that differentiate between acceptable and unacceptable behavior.

Figure 3: Reason (1997) A decision tree for determining culpability of unsafe acts, p. 290
7.0—SMS ORGANIZATION

7.1—MGA SOA SAFETY MANAGEMENT ORGANIZATION CHART

President of MGA
Dr. Christopher Blake 478-471-2712

Dean of MGA School of Aviation
Adon Clark 478-448-1070

Aviation Safety Manager
Stephen Steckowski 478-374-6651

Department Chairs
Ed Weathersbee 478-374-6711
Martin Kehayes 478-374-6445

Director of Aircraft Maintenance
Robby Hobbs 478-448-1026

Chief Flight Instructor
Adam Holloway 478-374-6408

8.0—FLIGHT RISK ASSESSMENT
All in Progress

8.1—INTRODUCTION
8.2—FLIGHT RISK ASSESSMENT POLICY
8.3—RISK FACTORS
8.4—USE OF FLIGHT RISK ASSESSMENT
8.5—SCENARIOS THAT MAY PROMPT A FLIGHT RISK ASSESSMENT
DEFINITIONS AND TERMINOLOGY

Accident – an unplanned event or series of events that results in death, injury, occupational illness, damage to or loss of equipment or property, or damage to the environment.

Analysis – the process of identifying a question or issue to be addressed, modeling the issue, investigating model results, interpreting the results, and possibly making a recommendation. Analysis typically involves using scientific or mathematical methods for evaluation.

Assessment – the process of measuring or judging the value or level of something.

Attributes – System Attributes, or the inherent characteristics of a system, are present in any well-defined organization and apply to an effective SMS. While the six system attributes were first applied with Air Transportation Oversight System (ATOS) fielding, there are conceptual differences when applied to SMS, as discussed below:

AUTHORITY & RESPONSIBILITY

Authority – who can direct, control, or change the process, as well as who can make key decisions such as risk acceptance. This attribute also includes the concept of empowerment.

Controls – controls are elements of the system, including hardware, software, special procedures, or procedural steps, and supervisory practices designed to keep processes on track to achieve their intended results. Organizational process controls are typically defined in terms of special procedures, supervisory and management practices, and processes. Many controls are inherent features of the SMS Framework. Practices such as continuous monitoring, internal audits, internal evaluations, and management reviews (all parts of the safety assurance component) are identified as controls within the design expectations. Additionally, other practices such as documentation, process reviews, and data tracking are identified as controls within specific elements and processes.

Interfaces – this aspect includes examining such things as lines of authority between departments, lines of communication between employees, consistency of procedures, and clearly delineating lines of responsibility between organizations, work units, and employees. Interfaces are the “Inputs” and “Outputs” of a process.

Safety Assurance – Safety Risk Management (SRM) and Safety Assurance (SA) are the key processes of the SMS. They are also highly interactive, especially in the input-output relationships between the activities in the processes. This is especially important where interfaces between processes involve interactions between different departments, contractors, etc. Assessments of these relationships should pay special attention to flow of authority, responsibility and communication, as well as procedures and documentation.

Procedures – International Organization for Standardization (ISO)-9001-2000 defines “procedure” as “a specified way to carry out an activity or a process” – procedures translate the “what” in goals and objectives into “how” in practical activities (things people do). Procedures are simply documented activities to accomplish processes, e.g. a way to perform a process. The organization should specify their own procedures for accomplishing processes in the context of their unique operational environment, organizational structure, and management objectives.

Process Measures – are ways to provide feedback to responsible parties that required actions are taking place, required outputs are being produced, and expected outcomes are being achieved. A basic principle of safety assurance is that fundamental processes be measured so that management decisions can be data-driven. The general expectations for Component 1, Policy, specify that SMS outputs be measured and analyzed. These measurements and analysis are accomplished in Component 3, Safety Assurance. Outputs of each process
should, therefore, be identified during Component 3 activities. For example, these outputs should be the subjects of continuous monitoring, internal audits, and internal evaluation. **Responsibility** – who is accountable for management and overall quality of the process (planning, organizing, directing, controlling) and its ultimate accomplishment.
Audit – scheduled, formal reviews and verifications that evaluate whether an organization has complied with policy, standards, and/or contract requirements. An audit starts with the management and operations of the organization and then moves to the organization’s activities and products/services.

Internal audit – an audit conducted by, or on behalf of, the organization being audited, e.g., the flight-training department audits the flight training department.

External audit – an audit conducted by an entity outside of the organization being audited, e.g., the flight operations division audits the flight training department.

Aviation system – the functional operation or production system used by an organization to produce an aviation product or service (see System and Functional below).

Complete – nothing has been omitted and what is stated is essential and appropriate to the level of detail.

Conformity – fulfilling or complying with a requirement [ref. ISO 9001-2000]; this includes but is not limited to complying with Federal regulations. It also includes complying with company requirements, requirements of operator developed risk controls, or operator policies and procedures.

Continuous monitoring – uninterrupted (constant) watchfulness (checks, audits, etc) over a system.

Corrective action – action to eliminate (remove) or mitigate (lessen) the cause or reduce the effects of a detected nonconformity or other undesirable (unwanted) situation.

Correct – accurate without ambiguity or error in its attributes.

Documentation – information or meaningful data and its supporting medium (e.g., paper, electronic, etc.). In this context, documentation is different from records because documentation is the written description of policies, processes, procedures, objectives, requirements, authorities, responsibilities, or work instructions; whereas Records are the evidence of results achieved or activities performed.

Evaluation – an independent review of company policies, procedures, and systems [ref. AC 120-59A]. If accomplished by the company, the evaluation should be done by a person or organization other than the one performing the function being evaluated. The evaluation process builds on the concepts of auditing and inspection. An evaluation is an anticipatory process designed to identify and correct potential problems before they happen. An evaluation is synonymous with the term “systems audit.”

Functional - The term “function” refers to “what” is expected to be incorporated into each process (e.g., human tasks, software, hardware, procedures, etc.) rather than “how” the function is accomplished by the system. This makes for a more performance based system and allows for a broad range of techniques to be used to accomplish the performance objectives. This, in turn, maximizes scalability while preserving standardization of results across the aviation organization communities.

Hazard – any existing or potential condition that can lead to injury, illness, or death; damage to or loss of a system, equipment, or property; or damage to the environment. A hazard is a condition that might cause (is a prerequisite to) an accident or incident.

Incident – a near-miss episode with minor consequences that could have resulted in greater loss. An incident is an unplanned event that could have resulted in an accident or did result in minor damage. An incident indicates that a hazard or hazardous condition exists, though it may not identify what that hazard or hazardous condition is.
Lessons learned – knowledge or understanding gained by experience, which may be positive, such as a successful test or mission, or negative, such as a mishap or failure. Lessons learned should be developed from information obtained from inside and outside of the organization and/or industry.

Likelihood – the estimated probability or frequency, in quantitative or qualitative terms, of an occurrence related to the hazard.
Line management – the management structure that operates (controls, supervises, etc) the operational activities and processes of the aviation system.

Nonconformity – non-fulfillment of a requirement (ref. ISO 9001-2000). This could include but is not limited to, noncompliance with Federal regulations, company requirements, requirements of operator developed risk controls or operator-specified policies and procedures.

Objective – the desired state or performance target of a process. Usually it is the final state of a process and contains the results and outputs used to obtain the desired state or performance target.

Operational life cycle – time period from implementation of a product/service until it is no longer in use.

Organization – indicates both certificated and non-certificated aviation organizations, aviation service providers, air carriers, airlines, maintenance repair organizations, air taxi operators, corporate flight departments, repair stations, and collegiate aviation schools.

Outputs – the product or end result of an SMS process, which can be recorded, monitored, measured, and analyzed. Outputs are the minimum expectation for the product of each process area and the input for the next process area in succession. Each of the outputs of a process should have a method of measurement specified by the organization. Measures need not be quantitative where this is not practical; however, some method of providing objective evidence of the attainment of the expected output is necessary.

Oversight – a function performed by a regulator (such as the FAA) that ensures that an aviation organization complies with and uses safety-related standards, requirements, regulations, and associated procedures. Safety oversight also ensures that the acceptable level of safety risk is not exceeded in the air transportation system.

Preventive action – preemptive action to eliminate or mitigate the potential cause or reduce the future effects of an identified or anticipated nonconformity or other undesirable situation.

Procedure – a specified way to carry out an activity or a process.

Process – a set of interrelated or interacting activities that transform inputs into outputs.

Process measures – refer to definition for Process Measures under the Attributes definition, above.

Product/service – anything that is offered or can be purchased that might satisfy a want or need in the air transportation system.

Records – evidence of results achieved or activities performed.

Residual safety risk – the safety risk that exists after all controls have been implemented or exhausted and verified. Only verified controls can be used for assessing residual safety risk.

Risk – the composite of predicted severity (how bad) and likelihood (how probable) of the potential effect of a hazard in its worst credible (reasonable or believable) system state. The terms risk and safety risk are interchangeable.

Risk control – steps taken to eliminate (remove) hazards or to mitigate (lessen) their effects by reducing the severity and/or likelihood of risk associated with those hazards.

Safety assurance – a formal management process within the SMS that systematically provides confidence that an organization’s products/services meet or exceed safety requirements. A Safety Assurance flow diagram includes the Framework element/process numbers and other notes to help the reader visualize the Framework in terms of a process flow (with interfaces), and understand the component / element / process expectations.

Safety culture – the product of individual and group values, attitudes, competencies, and patterns of behavior that determine the commitment to, and the style and proficiency of, the organization’s management of safety. Organizations with a positive safety culture are characterized by communications founded on mutual trust, by shared perceptions of the importance of safety and by confidence in the efficacy of preventive measures.
Safety Management System (SMS) – the formal, top-down business-like approach to managing safety risk. It includes systematic procedures, practices, and policies for the management of safety (as described in this document it includes safety risk management, safety policy, safety assurance, and safety promotion).

Product/service provider Safety Management System (SMS-P) – the SMS owned and operated by a product/service provider.

Oversight Safety Management System (SMS-O) – the SMS owned and operated by an oversight entity.

Safety objective – a goal or desirable outcome related to safety. Generally based on the organization’s safety policy, and specified for relevant functions and levels in the organization. Safety objectives are typically measurable.

Safety planning – part of safety management focused on setting safety objectives and specifying needed operational processes and related resources to fulfill these objectives.

Safety risk – the composite of predicted severity (how bad) and likelihood (how probable) of the potential effect of a hazard in its worst credible (reasonable or believable) system state. The terms safety risk and risk are interchangeable.

Safety risk control – a characteristic of a system that reduces or mitigates (lessens) the potential undesirable effects of a hazard. Controls may include process design, equipment modification, work procedures, training or protective devices. Safety risk controls must be written in requirements language, measurable, and monitored to ensure effectiveness.

Safety Risk Management (SRM) – a formal process within the SMS that describes the system, identifies the hazards, assesses the risk, analyzes the risk, and controls the risk. The SRM process is embedded in the processes used to provide the product/service; it is not a distinct, separate process.

Safety promotion – a combination of safety culture, training, and data sharing activities that support the implementation and operation of an SMS in an organization.

Separate Aviation Maintenance Organizations – are independent maintenance organizations such as, but not limited to, certificated repair stations, non-certificated repair facilities, and separate maintenance organizations. This does not include an air operator’s maintenance organization and is not intended to duplicate 1.0 B) 1) a) 3) of an air operator’s organization.

Severity – the degree of loss or harm resulting from a hazard.

Substitute risk – a risk unintentionally created as a consequence of safety risk control(s).

System – an integrated set of constituent elements that are combined in an operational or support environment to accomplish a defined objective. These elements include people, hardware, software, firmware, information, procedures, facilities, services, and other support facets.

System Attributes – refer to definition for Attributes
REFERENCES

Intentionally Blank