Algebraic Formula Sheet

Arithmetic Operations

ac + bc = c(a + b)	$a\left(\frac{b}{c}\right) = \frac{ab}{c}$
$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$	$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$
$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$	$\frac{a}{c} - \frac{c}{d} = \frac{ad - bc}{bd}$
$\frac{a-b}{c-d} = \frac{b-a}{d-c}$	$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$
$\frac{ab+ac}{a} = b+c, \ a \neq 0$	$\frac{\left(\frac{a}{\overline{b}}\right)}{\left(\frac{c}{\overline{d}}\right)} = \frac{ad}{bc}$
Properties of Exponents	
$x^n x^m = x^{n+m}$	$x^0 = 1, \ x \neq 0$
$(x^n)^m = x^{nm}$	$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$

$(xy)^n = x^n y^n \qquad \qquad \frac{1}{x^{-n}} = x^n$

$$x^{\frac{n}{m}} = \left(x^{\frac{1}{m}}\right)^{m} = \left(x^{n}\right)^{m} \qquad \frac{x^{n}}{x^{m}} = x^{n-m}$$

$$\left(\frac{x}{y}\right)^n = \left(\frac{y}{x}\right)^n = \frac{y^n}{x^n} \qquad x^{-n} = \frac{1}{x^n}$$

Properties of Radicals

$$\sqrt[n]{x} = x^{\frac{1}{n}} \qquad \qquad \sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$$

 $\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y}$ $\sqrt[n]{x^n} = x$, if *n* is odd

$$\sqrt[m]{\sqrt[n]{x}} = \sqrt[mn]{x}$$
 $\sqrt[n]{x^n} = |x|$, if *n* is even

Properties of Inequalities

If
$$a < b$$
 then $a + c < b + c$ and $a - c < b - c$
If $a < b$ and $c > 0$ then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$
If $a < b$ and $c < 0$ then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$

Properties of Absolute Value

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$
$$|x| \ge 0 \qquad \qquad |-x| = |x|$$
$$|xy| = |x||y| \qquad \qquad \left|\frac{x}{y}\right| = \frac{|x|}{|y|}$$

 $|x+y| \le |x|+|y|$ Triangle Inequality $|x-y| \ge ||x|-|y||$ Reverse Triangle Inequality

Distance Formula

Given two points, $P_A = (x_1, y_1)$ and $P_B = (x_2, y_2)$, the distance between the two can be found by:

$$d(P_A, P_B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Number Classifications

Natural Numbers : $\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$

Whole Numbers : $\{0, 1, 2, 3, 4, 5, \ldots\}$

Integers : $\mathbb{Z} = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$

Rationals : $\mathbb{Q} = \{ \text{All numbers that can be written as a fraction with an integer numerator and a nonzero integer denominator, <math>\frac{a}{b} \}$

Irrationals : {All numbers that cannot be expressed as the ratio of two integers, for example $\sqrt{5}$, $\sqrt{27}$, and π }

Real Numbers : $\mathbb{R} = \{ \text{All numbers that are either a rational or an irrational number} \}$

Definition

 $y = \log_b x$ is equivalent to $x = b^y$

Example

 $\log_2 16 = 4$ because $2^4 = 16$

 $Special \ Logarithms$

 $\ln x = \log_e x \quad \textbf{natural log}$ where e=2.718281828...

 $\log x = \log_{10} x$ common log

 $\log_b b = 1 \qquad \qquad \log_b 1 = 0$ $\log_b b^x = x \qquad \qquad b^{\log_b x} = x$ $\ln e^x = x \qquad \qquad e^{\ln x} = x$

Logarithm Properties

$$\log_{b} (x^{k}) = k \log_{b} x$$
$$\log_{b} (xy) = \log_{b} x + \log_{b} y$$
$$\log_{b} \left(\frac{x}{y}\right) = \log_{b} x - \log_{b} y$$

Factoring

$$\begin{aligned} xa + xb &= x(a + b) & x^3 + y^3 &= (x + y) \left(x^2 - xy + y^2\right) \\ x^2 - y^2 &= (x + y)(x - y) & x^3 - y^3 &= (x - y) \left(x^2 + xy + y^2\right) \\ x^2 + 2xy + y^2 &= (x + y)^2 & x^{2n} - y^{2n} &= (x^n - y^n) \left(x^n + y^n\right) \\ x^2 - 2xy + y^2 &= (x - y)^2 & \text{If } n \text{ is odd then,} \\ x^3 + 3x^2y + 3xy^2 + y^3 &= (x + y)^3 & x^n - y^n &= (x - y) \left(x^{n-1} + x^{n-2}y + \dots + y^{n-1}\right) \\ x^3 - 3x^2y + 3xy^2 - y^3 &= (x - y)^3 & x^n + y^n &= (x + y) \left(x^{n-1} - x^{n-2}y + x^{n-3}y^2 \dots - y^{n-1}\right) \end{aligned}$$

Linear Functions and Formulas

Examples of Linear Functions

Constant Function

This graph is a horizontal line passing through the points (x, c) with slope m = 0:

$$y = c$$
 or $f(x) = c$

Slope (a.k.a Rate of Change)

The slope m of the line passing through the points (x_1, y_1) and (x_2, y_2) is :

 $m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$

Linear Function/Slope-intercept form

This graph is a line with slope mand y - intercept(0, b):

$$y = mx + b$$
 or $f(x) = mx + b$

Point-Slope form

The equation of the line passing through the point (x_1, y_1) with slope *m* is :

$$y = m(x - x_1) + y_1$$

Quadratic Functions and Formulas Examples of Quadratic Functions

Forms of Quadratic Functions

Standard Form

$$y = ax^{2} + bx + c$$

or
$$f(x) = ax^{2} + bx + c$$

This graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at

$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right).$$

Vertex Form

$$y = a(x - h)^{2} + k$$

or
$$f(x) = a(x - h)^{2} + k$$

This graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at (h, k).

Quadratic Formula

To solve $ax^2 + bx + c = 0$, $a \neq 0$, use : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

The Discriminant

The discriminant is the part of the quadratic equation under the radical, $b^2 - 4ac$. We use the discriminant to determine the number of real solutions of $ax^2 + bx + c = 0$ as such :

- 1. If $b^2 4ac > 0$, there are two real solutions.
- **2.** If $b^2 4ac = 0$, there is one real solution.
- **3.** If $b^2 4ac < 0$, there are no real solutions.

Other Useful Formulas

Compound Interest

 $\mathbf{A} = P\left(1 + \frac{r}{n}\right)^{nt}$

where:

P= principal of P dollars r= Interest rate (expressed in decimal form) n= number of times compounded per year t= time

Continuously Compounded Interest

 $\mathbf{A} = P e^{rt}$

where:

P = principal of P dollars

 $\begin{array}{l} r= \mbox{ Interest rate (expressed in decimal form)} \\ t= \mbox{ time } \end{array}$

Circle

 $(x-h)^2 + (y-k)^2 = r^2$

This graph is a circle with radius r and center (h, k).

Ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

This graph is an ellipse with center (h, k) with vertices a units right/left from the center and vertices b units up/down from the center.

Hyperbola

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Square Root Property

solutions to the equation

are given by $x = \pm \sqrt{k}$.

Let k be a nonnegative number. Then the

 $x^2 = k$

This graph is a hyperbola that opens left and right, has center (h, k), vertices $(h \pm a, k)$; foci $(h \pm c, k)$, where c comes from $c^2 = a^2 + b^2$ and asymptotes that pass through the center $y = \pm \frac{b}{a}(x-h) + k$.

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

This graph is a hyperbola that opens up and down, has center (h, k), vertices $(h, k \pm a)$; foci $(h, k \pm c)$, where c comes from $c^2 = a^2 + b^2$ and asymptotes that pass through the center $y = \pm \frac{a}{b}(x-h) + k$.

Pythagorean Theorem

A triangle with legs a and b and hypotenuse c is a right triangle if and only if

$$a^2 + b^2 = c^2$$