Algebraic Formula Sheet

Arithmetic Operations

$$
\begin{aligned}
& a c+b c=c(a+b) a\left(\frac{b}{c}\right) \\
&=\frac{a b}{c} \\
& \frac{\left(\frac{a}{b}\right)}{c}=\frac{a}{b c} \frac{a}{\left(\frac{b}{c}\right)}=\frac{a c}{b} \\
& \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \frac{a}{c}-\frac{c}{d}=\frac{a d-b c}{b d} \\
& \frac{a-b}{c-d}=\frac{b-a}{d-c} \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c} \\
& \frac{a b+a c}{a}=b+c, a \neq 0 \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}=\frac{a d}{b c}
\end{aligned}
$$

Properties of Exponents

$$
x^{n} x^{m}=x^{n+m}
$$

$$
x^{0}=1, x \neq 0
$$

$$
\left(x^{n}\right)^{m}=x^{n m}
$$

$$
\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}
$$

$$
(x y)^{n}=x^{n} y^{n}
$$

$$
\frac{1}{x^{-n}}=x^{n}
$$

$$
x^{\frac{n}{m}}=\left(x^{\frac{1}{m}}\right)^{n}=\left(x^{n}\right)^{\frac{1}{m}}
$$

$$
\frac{x^{n}}{x^{m}}=x^{n-m}
$$

$$
\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}=\frac{y^{n}}{x^{n}} \quad x^{-n}=\frac{1}{x^{n}}
$$

Properties of Radicals

$$
\begin{aligned}
\sqrt[n]{x}=x^{\frac{1}{n}} & \sqrt[n]{\frac{x}{y}}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}} \\
\sqrt[n]{x y}=\sqrt[n]{x} \sqrt[n]{y} & \sqrt[n]{x^{n}}=x, \text { if } n \text { is odd } \\
\sqrt[m]{\sqrt[n]{x}}=\sqrt[m n]{x} & \sqrt[n]{x^{n}}=|x|, \text { if } n \text { is even }
\end{aligned}
$$

Properties of Inequalities
If $a<b$ then $a+c<b+c$ and $a-c<b-c$ If $a<b$ and $c>0$ then $a c<b c$ and $\frac{a}{c}<\frac{b}{c}$ If $a<b$ and $c<0$ then $a c>b c$ and $\frac{a}{c}>\frac{b}{c}$

Properties of Absolute Value $|x|=\left\{\begin{aligned} x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{aligned}\right.$

$$
|x| \geq 0
$$

$$
|-x|=|x|
$$

$$
|x y|=|x||y|
$$

$$
\left|\frac{x}{y}\right|=\frac{|x|}{|y|}
$$

$|x+y| \leq|x|+|y|$ Triangle Inequality $|x-y| \geq||x|-|y||$ Reverse Triangle Inequality

Distance Formula

Given two points, $P_{A}=\left(x_{1}, y_{1}\right)$ and $P_{B}=\left(x_{2}, y_{2}\right)$, the distance between the two can be found by:

$$
d\left(P_{A}, P_{B}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Number Classifications

Natural Numbers : $\mathbb{N}=\{1,2,3,4,5, \ldots\}$
Whole Numbers: $\quad\{0,1,2,3,4,5, \ldots\}$
Integers : $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots$.
Rationals : $\mathbb{Q}=\{$ All numbers that can be written as a fraction with an integer numerator and a nonzero integer denominator, $\left.\frac{a}{b}\right\}$

Irrationals : \{All numbers that cannot be expressed as the ratio of two integers, for example $\sqrt{5}, \sqrt{27}$, and $\pi\}$

Real Numbers: $\mathbb{R}=\{$ All numbers that are either a rational or an irrational number\}

Logarithms and Log Properties

Definition
$y=\log _{b} x \quad$ is equivalent to $x=b^{y}$
Example
$\log _{2} 16=4$ because $2^{4}=16$
Special Logarithms
$\ln x=\log _{e} x \quad$ natural \log where $e=\mathbf{2 . 7 1 8 2 8 1 8 2 8 . . .}$
$\log x=\log _{10} x \quad$ common log

Factoring

$x a+x b=x(a+b)$
$x^{2}-y^{2}=(x+y)(x-y)$
$x^{2}+2 x y+y^{2}=(x+y)^{2}$
$x^{2}-2 x y+y^{2}=(x-y)^{2}$
$x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=(x+y)^{3}$
$x^{3}-3 x^{2} y+3 x y^{2}-y^{3}=(x-y)^{3}$

Logarithm Properties

$$
\begin{array}{ll}
\log _{b} b=1 & \log _{b} 1=0 \\
\log _{b} b^{x}=x & b^{\log _{b} x}=x \\
\ln e^{x}=x & e^{\ln x}=x
\end{array}
$$

$\log _{b}\left(x^{k}\right)=k \log _{b} x$
$\log _{b}(x y)=\log _{b} x+\log _{b} y$
$\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$

$$
\begin{aligned}
& x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \\
& x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \\
& x^{2 n}-y^{2 n}=\left(x^{n}-y^{n}\right)\left(x^{n}+y^{n}\right)
\end{aligned}
$$

If n is odd then,

$$
\begin{aligned}
& x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\ldots+y^{n-1}\right) \\
& x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+x^{n-3} y^{2} \ldots-y^{n-1}\right)
\end{aligned}
$$

Linear Functions and Formulas

Examples of Linear Functions

Constant Function

This graph is a horizontal line passing through the points (x, c) with slope $m=0$:

$$
y=c \quad \text { or } \quad f(x)=c
$$

Slope (a.k.a Rate of Change)
The slope m of the line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is :
$m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}$

Linear Function/Slope-intercept form

This graph is a line with slope m and y-intercept $(0, b)$:

$$
y=m x+b \quad \text { or } \quad f(x)=m x+b
$$

Point-Slope form

The equation of the line passing through the point $\left(x_{1}, y_{1}\right)$ with slope m is :

$$
y=m\left(x-x_{1}\right)+y_{1}
$$

Quadratic Functions and Formulas

Examples of Quadratic Functions

Forms of Quadratic Functions

Standard Form

$$
\begin{gathered}
y=a x^{2}+b x+c \\
\text { or } \\
f(x)=a x^{2}+b x+c
\end{gathered}
$$

This graph is a parabola that opens up if $a>0$ or down if $a<0$ and has a vertex at

$$
\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)
$$

Vertex Form

$$
\begin{gathered}
y=a(x-h)^{2}+k \\
\text { or } \\
f(x)=a(x-h)^{2}+k
\end{gathered}
$$

This graph is a parabola that opens up if $a>0$ or down if $a<0$ and has a vertex at (h, k).

Quadratics and Solving for x

Quadratic Formula

To solve $a x^{2}+b x+c=0, a \neq 0$, use :
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

The Discriminant

The discriminant is the part of the quadratic equation under the radical, $b^{2}-4 a c$. We use the discriminant to determine the number of real solutions of $a x^{2}+b x+c=0$ as such :

1. If $b^{2}-4 a c>0$, there are two real solutions.
2. If $b^{2}-4 a c=0$, there is one real solution.
3. If $b^{2}-4 a c<0$, there are no real solutions.

Square Root Property

Let k be a nonnegative number. Then the solutions to the equation

$$
x^{2}=k
$$

are given by $x= \pm \sqrt{k}$.

Other Useful Formulas

Compound Interest

$\mathbf{A}=P\left(1+\frac{r}{n}\right)^{n t}$
where:
$\mathrm{P}=$ principal of P dollars
$\mathrm{r}=$ Interest rate (expressed in decimal form)
$\mathrm{n}=$ number of times compounded per year
$\mathrm{t}=$ time

Continuously Compounded Interest

$\mathbf{A}=P e^{r t}$
where:
$\mathrm{P}=$ principal of P dollars
$\mathrm{r}=$ Interest rate (expressed in decimal form)
$\mathrm{t}=$ time

Circle

$(x-h)^{2}+(y-k)^{2}=r^{2}$
This graph is a circle with radius r and center (h, k).

Ellipse

$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
This graph is an ellipse with center (h, k) with vertices a units right/left from the center and vertices b units up/down from the center.

Hyperbola

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

This graph is a hyperbola that opens left and right, has center (h, k), vertices $(h \pm a, k)$; foci $(h \pm c, k)$, where c comes from $c^{2}=a^{2}+b^{2}$ and asymptotes that pass through the center $y= \pm \frac{b}{a}(x-h)+k$.
$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
This graph is a hyperbola that opens up and down, has center (h, k), vertices $(h, k \pm a)$; foci $(h, k \pm c)$, where c comes from $c^{2}=a^{2}+b^{2}$ and asymptotes that pass through the center $y= \pm \frac{a}{b}(x-h)+k$.

Pythagorean Theorem

A triangle with legs a and b and hypotenuse c is a right triangle if and only if

$$
a^{2}+b^{2}=c^{2}
$$

